Search hhorg

Club Chemistry

15 March, 2010

Chemical Kinetics of Valentine’s Day


If the members of group A and group B want to form a union AB it can be described by the following chemical equation.
 \text{A} + \text{B} \rightarrow \text{AB}

which will have a rate constant of
 R = k[\text{A}][\text{B}]

Assuming this is an elementary process we can solve for the rate of this reaction by the introduction of a progress variable  x .
 x = ([\text{A}]_0 - [\text{A}]_t) = ([\text{B}]_0 - [\text{B}]_t)

Substituting  \frac{dx}{dt}  for  R  yields…
 \frac{dx}{dt} = k([\text{A}]_0 - x)([\text{B}]_0 - x)

And to determine the time behavior we simply integrate.
 \int_{x(0)}^{x(t)} \frac{dx}{([\text{A}]_0 - x)([\text{B}]_0 - x)} = k\int_0^t dt

Using the method of partial fractions 
 \int_0^x \frac{dx}{([\text{A}]_0 - [\text{B}]_0)([\text{B}]_0 - x)} - \int_0^x \frac{dx}{([\text{A}]_0 - [\text{B}]_0)([\text{A}]_0 - x)} = k\int_0^t dt

Integrating…
 -\frac{1}{([\text{A}]_0 - [\text{B}]_0)}\ln\left([\text{B}]_0 - x\right)_0^x + \frac{1}{([\text{A}]_0 - [\text{B}]_0)}\ln\left([\text{A}]_0 - x\right)_0^x = kt

Grouping…
 \frac{1}{([\text{A}]_0 - [\text{B}]_0)}\ln\left(\frac{([\text{A}]_0 - x)}{([\text{B}]_0 - x)}\right)_0^x = kt

Evaluating this from 0 to  x
 \frac{1}{([\text{A}]_0 - [\text{B}]_0)}\ln\left(\frac{([\text{A}]_0 - x)}{([\text{B}]_0 - x)}\right) - \frac{1}{([\text{A}]_0 - [\text{B}]_0)}\ln\left(\frac{([\text{A}]_0 - 0)}{([\text{B}]_0 - 0)}\right) = kt

 \frac{1}{([\text{A}]_0 - [\text{B}]_0)}\ln \left(\frac{([\text{A}]_0 - x)}{([\text{B}]_0 - x)}\right) - \frac{1}{([\text{A}]_0 - [\text{B}]_0)}\ln \left(\frac{[\text{A}]_0}{[\text{B}]_0}\right) = kt

Remembering that  [\text{A}]_0 - x = [\text{A}]_t
 \frac{1}{([\text{A}]_0 - [\text{B}]_0)}\ln \left(\frac{[\text{A}]_t}{[\text{B}]_t} \right) - \frac{1}{([\text{A}]_0 - [\text{B}]_0)}\ln \left(\frac{[\text{A}]_0}{[\text{B}]_0}\right) = kt

Simplifying, we finally have an expression for the union of two reactive groups of people on Valentine’s day.
 \frac{1}{([\text{A}]_0 - [\text{B}]_0)}\ln \left(\frac{[\text{A}]_t[\text{B}]_0}{[\text{B}]_t[\text{A}]_0} \right)  = kt
May the rate constant (k) be large today!

No comments:

Post a Comment