Optical isomerism is a form of stereoisomerism. This page explains what stereoisomers are and how you recognise the possibility of optical isomers in a molecule.What is stereoisomerism?What are isomers? Isomers are molecules that have the same molecular formula, but have a different arrangement of the atoms in space. That excludes any different arrangements which are simply due to the molecule rotating as a whole, or rotating about particular bonds. Where the atoms making up the various isomers are joined up in a different order, this is known as structural isomerism. Structural isomerism is not a form of stereoisomerism, and is dealt with on a separate page. | |
Note: If you aren't sure about structural isomerism, it might be worth reading about it before you go on with this page. | |
What are stereoisomers? In stereoisomerism, the atoms making up the isomers are joined up in the same order, but still manage to have a different spatial arrangement. Optical isomerism is one form of stereoisomerism. Optical isomerismWhy optical isomers? Optical isomers are named like this because of their effect on plane polarised light. | |
Help! If you don't understand about plane polarised light, follow this link before you go on with this page. | |
Simple substances which show optical isomerism exist as two isomers known as enantiomers.
| |
Note: One of the worrying things about optical isomerism is the number of obscure words that suddenly get thrown at you. Bear with it - things are soon going to get more visual!There is an alternative way of describing the (+) and (-) forms which is potentially very confusing. This involves the use of the lowercase letters d- and l-, standing for dextrorotatory and laevorotatory respectively. Unfortunately, there is another different use of the capital letters D- and L- in this topic. This is totally confusing! Stick with (+) and (-). | |
How optical isomers arise The examples of organic optical isomers required at A' level all contain a carbon atom joined to four different groups. These two models each have the same groups joined to the central carbon atom, but still manage to be different: They are described as being non-superimposable in the sense that (if you imagine molecule B being turned into a ghostly version of itself) you couldn't slide one molecule exactly over the other one. Something would always be pointing in the wrong direction. | |
Note: Unless your visual imagination is reasonably good, this is much easier to understand if you have actually got some models to play with. If your school or college hasn't given you the opportunity to play around with molecular models, you might consider getting hold of a cheap set. The models made by molymod are both cheap and easy to use. An introductory organic set is more than adequate. Find them at www.molymod.com.Alternatively , get hold of some coloured Plasticene and some used matches and make your own. | |
What happens if two of the groups attached to the central carbon atom are the same? The next diagram shows this possibility. Rotating molecule B this time shows that it is exactly the same as molecule A. You only get optical isomers if all four groups attached to the central carbon are different. The essential difference between the two examples we've looked at lies in the symmetry of the molecules. If there are two groups the same attached to the central carbon atom, the molecule has a plane of symmetry. If you imagine slicing through the molecule, the left-hand side is an exact reflection of the right-hand side. Where there are four groups attached, there is no symmetry anywhere in the molecule. The molecule on the left above (with a plane of symmetry) is described as achiral. Only chiral molecules have optical isomers. The relationship between the enantiomers One of the enantiomers is simply a non-superimposable mirror image of the other one. In other words, if one isomer looked in a mirror, what it would see is the other one. The two isomers (the original one and its mirror image) have a different spatial arrangement, and so can't be superimposed on each other. Some real examples of optical isomers Butan-2-ol The asymmetric carbon atom in a compound (the one with four different groups attached) is often shown by a star. | |
Help! If you don't understand this bond notation, follow this link to drawing organic molecules before you go on with this page. | |
Notice that you don't literally draw the mirror images of all the letters and numbers! It is, however, quite useful to reverse large groups - look, for example, at the ethyl group at the top of the diagram. It doesn't matter in the least in what order you draw the four groups around the central carbon. As long as your mirror image is drawn accurately, you will automatically have drawn the two isomers. So which of these two isomers is (+)butan-2-ol and which is (-)butan-2-ol? There is no simple way of telling that. For A'level purposes, you can just ignore that problem - all you need to be able to do is to draw the two isomers correctly. 2-hydroxypropanoic acid (lactic acid) Once again the chiral centre is shown by a star. 2-aminopropanoic acid (alanine) This is typical of naturally-occurring amino acids. Structurally, it is just like the last example, except that the -OH group is replaced by -NH2 It has, however, been possible to work out which of these structures is which. Naturally occurring alanine is the right-hand structure, and the way the groups are arranged around the central carbon atom is known as an L- configuration. Notice the use of thecapital L. The other configuration is known as D-. So you may well find alanine described as L-(+)alanine. That means that it has this particular structure and rotates the plane of polarisation clockwise. Even if you know that a different compound has an arrangement of groups similar to alanine, you still can't say which way it will rotate the plane of polarisation. The other amino acids, for example, have the same arrangement of groups as alanine does (all that changes is the CH3 group), but some are (+) forms and others are (-) forms. It's quite common for natural systems to only work with one of the enantiomers of an optically active substance. It isn't too difficult to see why that might be. Because the molecules have different spatial arrangements of their various groups, only one of them is likely to fit properly into the active sites on the enzymes they work with. In the lab, it is quite common to produce equal amounts of both forms of a compound when it is synthesised. This happens just by chance, and you tend to get racemic mixtures. |
21 February, 2010
STEREOISOMERISM - OPTICAL ISOMERISM
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment