Search hhorg

Club Chemistry

21 February, 2010

NanoPropulsion



Stephen J. Ebbens

Jonathan Howse
The current state of the art in nanopropulsion devices was recently reviewed by Ebbens and Howse in an article last Friday.[SoftMatter] A short summary of the nano- systems is presented below with video action shots when I could find them.
The Whitesides
Catalyst: Pt
Fuel: H2O2
Propulsion: Bubble propulsion
Terrain: Aqueous meniscus
Max Speed: 2 cm/s
Mitch’s Name: The Karl Benz (since it was the first)
Article: Autonomous Movement and Self-Assembly
The Sen-Mallouk-Crespi

Catalyst: Pt
Fuel: H2O2
Propulsion: Self electrophoresis/Interfacial tension
Terrain: Settled near boundary in aqueous solution
Max Speed: 6.6 um/s
Mitch’s Names: The Ford Mustang of nanopropulsion. (It is a hot rod, get it?)
Article: Catalytic Nanomotors: Autonomous Movement of Striped Nanorods
The Jones-Golestanian
Catalyst: Pt
Fuel: H2O2
Propulsion: Pure self diffusiophoresis
Terrain: Free aqueous solution
Max Speed: 3um/s
Mitch’s Name: The Volkswagen Beetle
Article: Self-Motile Colloidal Particles: From Directed Propulsion to Random Walk
The Mano-Heller
Catalyst: Glucose oxidase and Biliruben oxidase
Fuel: Glucose
Propulsion: Self electrophoresis
Terrain: Aqueous meniscus
Max Speed: 1 cm/s
Mitch’s Name: The Komatsu Truck (because it is huge)
Article: Bioelectrochemical Propulsion
The Feringa
Catalyst: Synthetic catalse
Fuel: H2O2
Propulsion: Bubble/interfacial
Terrain: Acetonitrile solution
Max Speed: 35 um/s
Mitch’s Name: The F150 (has some exhaust issues)
Article: Catalytic molecular motors: fuelling autonomous movement by a surface bound synthetic manganese catalase
The Sen-Mallouk
Catalyst: Pt (CNT) (+cathodic reactions at Au)
Fuel: H2O2/N2H4
Propulsion: Self electrophoresis
Terrain: Settled near boundary in aqueous solution
Max Speed: 200 um/s
Mitch’s Names: The Ford Mustang GT (has more kick than the regular version)
Article: Bipolar Electrochemical Mechanism for the Propulsion of Catalytic Nanomotors in Hydrogen Peroxide Solutions
The Feringa v2
Catalyst: Glucose oxidase and catalse
Fuel: Glucose
Propulsion: Local oxygen bubble formation
Terrain: Free aqueous buffer solution
Max Speed: 0.2–0.8 um/s
Mitch’s Name: The Chevrolet Nova (more hot rod action)
Article: Autonomous propulsion of carbon nanotubes powered by a multienzyme ensemble
The Gibbs-Zhao
Catalyst: Pt
Fuel: H2O2
Propulsion: Bubble release mechanism
Terrain: Aqueous solution
Max Speed: 6 um/s
Mitch’s Name: The Rover
Article: Autonomously motile catalytic nanomotors by bubble propulsion
The Bibette
Engine: External magnetic field
Propulsion: Flagella
Terrain: Aqueous solution
Max Speed: unknown
Mitch’s name: The BMW Mini E (because there is no such thing as a magnetic car)
Article: Microscopic artificial swimmers
The Sagués
Engine: External magnetic field
Propulsion: Doublet rotation coupling with boundary interactions
Terrain: Settled near boundary in aqueous solution
Max Speed: 3.2 um/s
Mitch’s Name: The Smart ED
Article: Magnetically Actuated Colloidal Microswimmers
The Fischer
Engine: External magnetic field
Propulsion: Propeller drive
Terrain: Aqueous solution
Max Speed: 40 um/s
Mitch’s Name:
Article: Controlled Propulsion of Artificial Magnetic Nanostructured Propellers
The Najafi-Golestanian
Engine: Conformation changes in linking units
Propulsion: Time irreversible translations
Terrain: Free solution
Max Speed: ?
Mitch’s Name: The Eternal Concept Car
Article: Propulsion at low Reynolds number

Some devices that were not included by the authors of the review article, but should definitely be included in any list like this are below:

The Gracias
Engine: External magnetic field
Propulsion: Brute Force
Terrain: Aqueous solution
Max Speed: ?
Mitch’s Name: The Truck Cranes
Article: Tetherless thermobiochemically actuated microgrippers
The Nelson
null
Engine: External electromagnetic fields
Propulsion: Flagella
Terrain: ?
Max Speed: 18 um/s
Mitch’s Name: The Tesla Roadster (simply awesome)
Article: Characterizing the Swimming Properties of Artificial Bacterial Flagella




No comments:

Post a Comment